
Developing a SNMP Agent on 8-bit Systems

ESC-465.doc Page 1 of 16

ESC-465: Developing a SNMP Agent
on 8-bit Systems

By
Nilesh Rajbharti

Microchip Technology Inc.
Nilesh.Rajbharti@microchip.com

Developing a SNMP Agent on 8-bit Systems

ESC-465.doc Page 2 of 16

Table of Contents

Introduction ___ 3

Assumption__ 3

Why SNMP?___ 3

What is SNMP? __ 4

SNMP Model __ 6

SNMP PDUs___ 6

Management Information Base (MIB) ______________________________________ 9

Abstract Syntax Notation (ASN) __ 11

Binary Encoding Rule (BER) __ 11

Developing 8-bit SNMP Agent ___ 12

Select SNMP version and transport _______________________________________ 12

Private Enterprise Number ___ 13

Define your MIB__ 13

Get/Set Logic for MIB ___ 13

NMS Software __ 15

Conclusion ___ 16

References ___ 16

Developing a SNMP Agent on 8-bit Systems

ESC-465.doc Page 3 of 16

Introduction
As the number of networked embedded systems increases, system designers must also
provide the capability to monitor and control many devices, preferably in some
automated fashion. Typically, this would require significant design and development
decisions. But thanks to the Simple Network Management Protocol (SNMP), system
designers can integrate a flexible ready-made solution. SNMP is a widely used
management protocol for enterprise-computing networks. As we go through SNMP in
more detail, it will become apparent that embedded systems can adopt the same protocol
and reap the benefits of widely available SNMP tools. If you are an 8-bit system
designer, you may quickly find tha t there are not many solutions available for 8-bit
systems. There is plethora a of 16-bit and 32-bit SNMP Agents available, but there are
very few that target 8-bit systems. Developing a SNMP Agent on 8-bit systems poses a
unique challenge to system designers. A limited set of program and data memory
requires creative thinking on the designer’s part. One must make sacrifices in terms of
protocol compliance and still keep it reasonably practical. This paper explains SNMP
protocol along with its importance to embedded systems. The paper also discusses
important SNMP Agent development issues one must consider when selecting or
developing an SNMP Agent for an 8-bit system. This paper is expected to serve as a
high- level guide for potential SNMP Agent application developers and system designers.

Assumption
The reader is expected to possess basic knowledge of TCP/IP protocols. A working
knowledge of typical issues involved in remote device management is useful but not
required.

Why SNMP?
When you have one or more devices connected to a system, it is imperative that the
system provides some type of device monitoring and management functionality. As
shown in Figure 1 Local Device Management, when devices are located in the physical
proximity of one another, monitoring and management do not become a critical issue.

Figure 1 Local Device Management

However, as more and more devices are placed on a network that may span across the
world, device management assumes an entirely new meaning. These devices may no
longer be in the same physical proximity, and management software must be developed
to provide the necessary status and control information. Remote devices must also
execute a special management firmware module. System designers must decide to either

Card

Computer

Developing a SNMP Agent on 8-bit Systems

ESC-465.doc Page 4 of 16

develop proprietary software or utilize an off- the-shelf solution. Some systems can afford
to benefit from proprietary software, but the majority of systems use off-the-shelf, third
party devices. In those systems, use of proprietary software means that the system
console must keep separate management software for each manufacture specific device
on the network.

Figure 2 Network Devices Proliferation

SNMP was originally designed to solve this problem for the enterprise-computing
industry. If used strategically, 8-bit embedded systems can benefit from the same
protocol. One of the main advantages of using SNMP protocol is the availability of
multiple third party PC-based monitoring software programs. As discussed in the next
sections, SNMP is a very flexible and powerful protocol to transfer device management
information.

What is SNMP?
The SNMP is a network-management protocol. It is primarily used to manage computer
network devices such as file servers, print servers, printers, Ethernet hubs and other
network-based systems. In enterprise-networks, SNMP is used to provide network
statistical information such as the number of packets received, transmitted, dropped, etc.
In addition, some devices may provide very specific information applicable to that device
only.

Card

Computer

Card

Card

Developing a SNMP Agent on 8-bit Systems

ESC-465.doc Page 5 of 16

Modem USART Ethernet

PPP SLIP ARP

IP ICMP

UDP TCP

DHCP SNMP FTP HTTP SMTP

Physical Layer

Network Layer

Internet Layer

Transport Layer

Application Layer

Figure 3 TCP/IP Stack

Figure 3 TCP/IP Stack, depicts a SNMP and resides at the application layer. SNMP is
described in RFC 1157 in conjunction with other supporting RFC documents. The
majority of the SNMP implementation utilizes a UDP (User Datagram Protocol) as its
main transport layer. However, you may also use TCP (Transmission Control Protocol).
UDP provides relatively small and simple transport services at the expense of reduced
reliability. TCP, on the other hand, provides a more reliable transport at an increased
program memory requirement. When employing a UDP, most of the SNMP management
applications perform extra timeout and error checking to ensure a reliable management
connection. As a result, the choice of using UDP or TCP as a transport service really
depends on the amount of resources available. For 8-bit embedded systems with limited
program and data memory, UDP is the choice of transport.

Protocols such as HTTP (Hyper Text Transfer Protocol) and SMTP (Simple Mail
Transfer Protocol) are considered human-to-machine protocols. These protocols are
primarily designed for humans as one end of the communication link. These protocols
transfer various types of data, including graphics and video, which are meant for humans
only. It would be difficult to have a machine decode web-page content and use it as an
automated remote management interface. SNMP, on the other hand, is designed to be a
machine-to-machine protocol. It provides strict rules that define exactly how various data
information is transferred and interpreted. These characteristics allow us to program
computer-based systems to request specific management information, interpret it and take
appropriate actions, all without human involvement. The standard for data representation
allows SNMP-enabled devices to communicate with one another, no matter what
processor, application or operating system is in use. In order to standardize device
management even further, SNMP defines how each device stores management data. This
standardization allows the use of management software from any vendor and the ability
to discover the management capabilities of any given device on a network.

There are three main versions of SNMP – v1.0, 2.0 and 3.0. Version 1.0 provides the
basic functionality, while v3.0 provides advanced features. This paper focuses on v1.0
only.

Developing a SNMP Agent on 8-bit Systems

ESC-465.doc Page 6 of 16

SNMP Model
To understand SNMP-based systems, you must understand the SNMP Model. It defines
the different components of SNMP-based systems and introduces various terminology.

Network

Management Station

Managed
Nodes

Management
Information

Management
Protocol

Figure 4 SNMP Model

A typical SNMP-based system consists of one or more management stations and one or
more managed nodes. A management station is the console where all management
activities are performed. Normally, a PC is used as a management station and is often
called a Network Management Station or NMS for short. NMS is connected to one or
more managed nodes via the SNMP protocol. Managed nodes are any devices or
computers that need to be managed. Managed node is commonly referred as “SNMP
Agent” or simply an “Agent.” Each agent contains a special database called a
Management Information Base (MIB). MIB contains actual data or variables that are
used to manage that specific device. In the simplest view, each device exposes its own
MIB to remote NMS, whereby NMS may modify or read one or more variables within
the device MIB. As variables are modified, the device detects changes in values and takes
appropriate actions. The NMS and Agent use SNMP commands and responses to transfer
MIB information. Each packet in SNMP is called a Protocol Data Unit (PDU).

The SNMP-based system is an example of a client-sever application. Each agent device
acts as a SNMP server, while NMS acts as a client. One NMS client may connect to
many server devices. Similarly, one server device may serve many different NMS client.
With this client-server approach, end users can use a single NMS software to manage
hundreds of devices.

SNMP PDUs
SNMP defines five basic types of packets or PDUs.

1. GET to get one or more variables from the SNMP Agent
2. GET-NEXT to obtain the next variable from the SNMP Agent
3. GET-RESPONSE to respond to NMS from the SNMP Agent
4. SET to set one or more variables within the SNMP Agent MIB

Developing a SNMP Agent on 8-bit Systems

ESC-465.doc Page 7 of 16

5. TRAP to send an asynchronous message from the SNMP Agent to NMS

SNMP uses a command-response format to transfer data to and from the SNMP Agent
and NMS. Normally NMS will always initiate a transfer by issuing the GET command.
The SNMP Agent responds by sending a GET-RESPONSE message. The only exception
to this is TRAP. The SNMP Agent can be configured to send a TRAP message to NMS if
certain events occur. The TRAP is an asynchronous message to indicate the occurrence of
an important event. NMS would receive this message and may act accordingly. Figure 5
shows a typical SNMP Agent, NMS transaction.

Figure 5 SNMP Interaction

If using UDP, the SNMP Agent listens on the UDP port 161 to receive commands from
NMS. The SNMP Agent sends TRAP to NMS on UDP port 162. With separate UDP port
numbers for receiving command and TRAP, a single device may act as both NMS and
Agent. As you will see in later sections, this feature is useful for distributed control.

version community PDU Type request ID error Status error Index name value ...

SNMP Header Get/Set Header Variables

enterprise agent addr trap type code time
stamp name value

Trap Header Variables

GET-REQUEST

GET-RESPONSE

SET-REQUEST

TRAP

NMS SNMP
Agent

GET-NEXT-REQUEST

GET-RESPONSE

GET-RESPONSE

UDP Port 162 UDP Port 161

Developing a SNMP Agent on 8-bit Systems

ESC-465.doc Page 8 of 16

Figure 6 SNMP PDU Format

All SNMP PDUs use a common SNMP header. The version field describes the SNMP
version in use. A value of ‘0’ indicates SNMP v1.0. The community field is a name for a
community of SNMP Agents that need to be accessed. In SNMP terminology, more than
one SNMP Agent and NMS form a community. To gain access to community resources,
you must know the name of the community. This is synonymous to a password, although
there is no login name and password pair. Normally, this is a plain-text field unless the
advanced encryption features of higher SNMP versions are used. By default, most SNMP
Agents use the community name of public. Embedded systems that are exposing critical
information should use some non-standard community name and perform extra checks to
verify the NMS before responding. The PDU Type specifies the type of PDU this packet
carries. For each of the five messages we reviewed earlier, there is a corresponding PDU
Type value; the rest of the packet format depends on PDU Type value.

GET, GET-RESPONSE and SET messages use the same packet format, while TRAP uses
a different format. The request ID is used by NMS software to track a command and its
response. The error status and error index is used by the SNMP Agent to report any
errors during the processing of the command. The variable section of the packet consists
of zero or more variable-value pairs. The GET command packet uses NULL as the
variable value to indicate that the value is not known or applicable. The GET-
RESPONSE command from the SNMP Agent contains both name and value, unless the
specific variable was unknown or invalid. For the SET command, the NMS must specify
the value that is to be written to a specified variable. As shown in a later section, each
variable has read/write permission. If an attempt is made to modify the read-only
variable, the SNMP Agent will respond with the appropriate error values in an error
status field with the error index pointing to the index of the variable that caused the error.
A PDU may contain one or more variable-value pair. The exact number is limited by the
total length of PDUs. For UDP transport, total PDU length, including MAC and IP
header, is limited to maximum the MAC packet length. For example, for Ethernet it is
1536 bytes. In the case of TCP transport, PDU length can be more than the MAC limit.
TCP will fragment and re-assemble long PDUs at the receiving end.

Unlike GET/SET PDUs, TRAP is a unique message. In the case of GET/SET PDUs, NMS
always initiates the transfer, and the SNMP Agent simply responds to the NMS requests.
The Agent is not expected to send unsolicited responses. If there is a need to do so, the
Agent may use TRAP messages. TRAP,as the name suggests, is a trap set by NMS on
certain variables in the SNMP Agent and MIB. The TRAP message specifies that when
certain variables change beyond a given limit, the Agent should send out an
asynchronous message to NMS. The Agent may use TRAP to notify NMS of some
important events proactively, thus relieving NMS from continually polling the Agent.
When there are many Agents on a network, TRAP can significantly reduce network
traffic.

The enterprise field in a TRAP PDU identifies the Agent that issues this message. In a
given system, this is usually a unique Object Identifier (OID) string. The Agent Address

Developing a SNMP Agent on 8-bit Systems

ESC-465.doc Page 9 of 16

is an IP address of the Agent. The Trap type specifies the type of trap. There are a total of
seven types of traps; most of them are designed for high-end computer systems with more
than one network interface. One that is important for 8-bit systems is the enterprise-
specific trap. This trap type allows the system designer to identify a custom TRAP
condition. The code is used to provide more information about TRAP. In case of the
enterprise-specific TRAP, code may be used to describe the category or module that
cause the trap. The timestamp is the time at which the Trap condition occurred. It is the
hundredths of seconds since the Agent was last initialized. The TRAP may also contain
the variable-value pair to provide the exact variable state at the time of the Trap
condition. This allows the Agent to provide notification and related information in one
packet, rather than NMS separately requesting it.

Management Information Base (MIB)
As discussed earlier, each SNMP-Agent device maintains a database called the MIB. The
MIB is a collection of variables. If you are familiar with ‘C’ language, you may think
MIB as a structured data file containing many variables. SNMP calls these variables as
objects. Like ‘C’ language data variables, each variable in MIB is associated with a
specific data type. This data type describes exactly how to interpret data contained by a
specific variable. Each object in MIB is assigned a unique OID. The NMS uses OID to
refer to specific variables in the Agent’s MIB.

As we mentioned earlier, SNMP specifies how each data item should be stored in the
Agent’s database. To accomplish this, the SNMP uses another specification called
Structure of Management Information (SMI). The SMI is a tree- like structure that
specifies how individual variables are to be stored in a database.

Variable1

Variable2 Variable3 Variable4

Variable5 Variable6 Variable7

Object Identifier

Leaf

Root

Figure 7 Structure of Management Information

At the top of SMI, there is a root node. Each node contains zero or more child nodes,
with the exception of those at the bottom of the trees, called “leaf nodes”. The leaf nodes
contain the actual data. All nodes above the leaf nodes define a unique path to a specific
leaf node. With MIB stored in such a tree- like structure, any NMS can traverse through

Developing a SNMP Agent on 8-bit Systems

ESC-465.doc Page 10 of 16

the entire database without visiting a variable more than once. This capability is essential
given that NMS does not have to have prior knowledge of the Agent’s database. The
NMS must be able to determine all variables supported by the Agent.

internet(1)

directory(1) mgmt(2) private(4)

mib(1)

experimental(3)

system(1) tcp(6) ...

enterprises(1)

...

dod(6)

org(3)

iso(1)

root

1.3.6.1

1.3.6.1.2.1

Figure 8 Example of SMI

The SMI is a method widely used by many operating systems and applications. SNMP
uses a MIB tree named internet below the dod node. The sub-tree mgmt defines various
sub-trees to describe IP protocol statistics and system information. RFC 1213 describes
MIB-II that covers mib and all nodes below it.

In the SMI notation, each node in the tree is assigned an Identifier number and English
name. The actual communication packets use numbers, while the names are for human
readability only. Each node in the tree is uniquely identified by its unique path from the
root. For example, internet node is identified as 1.3.6.1 or
iso(1).org(3).dod(6).internet(1). This unique string of numbers is an OID, which is
written in a dotted-decimal notation similar to one used to write IP addresses. There is no
limit on the maximum value of node or length of OID. The identifier value of each node
is assigned by the Internet Assigned Numbers Authority (IANA). To conserve the
number of bytes required to encode OID, Internet node is referred to as 43.6.1. As a
result, all SNMP MIBs will always have ‘43’ as its first number.

Of all the nodes shown, enterprises (1) is an interesting one. Unlike other nodes, you may
add a sub-tree below this node. This node is designed to host private-enterprise MIB sub-
trees. As discussed in later sections, when you are developing your own SNMP Agent,
you would need to create a MIB. To do that, you must first obtain your private OID.
That private OID will exist below the enterprise (1) node.

Developing a SNMP Agent on 8-bit Systems

ESC-465.doc Page 11 of 16

Abstract Syntax Notation (ASN)
If you were to read RFC 1157, the document that explains the SNMP protocol, you will
find that the contents of the SNMP packets are described using a special notation called
the Abstract Syntax Notation version 1 (ASN.1). In addition, ASN.1 is also used to
describe MIB structure. Figure 9 shows part of ASN.1 syntax that describes the Internet
SMI object called “udpTable”.

 org OBJECT IDENTIFIER ::= { iso 3 }
 dod OBJECT IDENTIFIER ::= { org 6 }
 internet OBJECT IDENTIFIER ::= { dod 1 }
 ...

 udpTable OBJECT-TYPE
 SYNTAX SEQUENCE OF udpEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 “A table containing...”
 ::= { udp 5 }
 ...

Figure 9 Example ASN.1 Syntax

ASN.1 syntax describes the different attributes such as OID value; data type, access type
and so on. If you are developing an SNMP Agent and want to allow your end users to use
third party NMS software, you must create an ASN.1 file describing the MIB of your
device. To create the ASN.1 file, you do not have to learn the syntax. There are many
commercially available ASN.1 syntax authoring and compiler tools. These tools may
provide a graphical interface to define the MIB, and may generate an ASN.1 file for you.

Many of the commercially available PC-based SNMP-Agent development tools use an
ASN.1 file to generate part of the Agent source code and the function stubs. Once you
have the function stubs generated, you are required to provide necessary logic that allows
a generic SNMP agent library to read and write specific the MIB variable. This type of
development support can indeed shorten the overall SNMP-Agent development cycle.
However, when it comes to 8-bit systems, you may not be able to afford this luxury.
Later sections discuss this in more detail.

Binary Encoding Rule (BER)
In a previous section, we reviewed ASN.1 syntax. ASN.1 describes how MIB is
structured. It does not, however, describe how MIB information should be transmitted or
received. For that, SNMP uses another method, called Binary Encoding Rules (BER).
BER tells us how each object in MIB is to be encoded and transmitted or received in a
SNMP packet.

Tag Number Length Value

Bits 2 1 5 8 - n 0 - n

Figure 10 BER Syntax

Developing a SNMP Agent on 8-bit Systems

ESC-465.doc Page 12 of 16

According to BER, each data variable consists of a Tag byte, one or more Length bytes
and zero or more Value bytes. The Tag byte describes the data type of the variable. The
SNMP uses native data types, originally defined by SMI, and defines many more.

Figure 11 shows an example of BER encoding of Integer 49.

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 1

Encoding Integer 49:

Figure 11 BER Example

Developing an 8-bit SNMP Agent
By now, you should have a basic understanding of SNMP and its usage. If you agree that
SNMP is the solution to your remote-device management problem, you need to make an
important decision. Should you use an off- the-shelf SNMP Agent toolkit or develop your
own? In any case, developing an SNMP Agent library is not simple, even though SNMP
stands for Simple Network Management Protocol. Irrespective of what method you
select, there are certain steps you must follow.

1. Select SNMP version and transport protocol
2. Obtain a Private Enterprise Number
3. Define your device MIB structure
4. Write Get/Set logic for each MIB object
5. Test with desired NMS software

Select SNMP version and transport
As we reviewed earlier, there are multiple SNMP versions. SNMP v1.0 is the most
widely used and easiest to implement. Higher versions add more commands and provide
advanced features like encryption and remote configuration. For 8-bit systems, SNMP
v1.0 is the most suitable version. Most of the 8-bit systems do not need advanced features
offered by higher versions of SNMP. Basic command sets provided by v1.0 should be
enough for most 8-bit systems. Due to its simplicity, SNMP v1.0 results in smaller code
footprint and also requires less processing power.

The SNMP itself is an IP application that needs some underlying transport protocol to
transfer its packets to other nodes. As a system designer, you may use either UDP or TCP
as your transport protocol. UDP provides less reliable transport, but offers simple and
relatively smaller implementation. TCP is a more reliable, connection-oriented protocol
and results in larger, complex implementation. Since 8-bit systems have limited
resources, UDP is the most desirable transport protocol for an SNMP Agent
implementation. Many of the NMS software implement a response-timeout check. As a
result, if a response from a specific Agent is not received within a preset timeout period,
the NMS software would try again. This check would ensure reliable command-response

Developing a SNMP Agent on 8-bit Systems

ESC-465.doc Page 13 of 16

transfers. If a TRAP sent by the Agent is lost, the Agent may implement some simple
handshaking mechanism to verify that the desired recipient did receive TRAP.

Private Enterprise Number
If you are planning to design a device that is expected to co-exist with other
commercially available devices, you must obtain a “Private Enterprise Number.” An
Enterprise Number is one of the nodes in the Internet MIB. This number is unique to each
device manufacturer. You must apply to the Internet Assigned Number Authority (IANA)
at www.iana.org/cgi-bin/enterprise.pl to obtain your own number. Unlike other
registration processes, this is completely free. But you may only obtain one enterprise
number per organization. Once you have your own private enterprise number, you may
then create child nodes below this node and add as many sub-trees as you like.

Define your MIB
The next step would be to design your MIB structure. This would depend on the extent of
your device is remote management capability. You must describe your MIB structure
using ASN.1 syntax. You may create as many ASN.1 files as required to describe your
MIB structure. You would distribute this file to your end users, which would then load
them into their own NMS software. As we discussed earlier, you may either create the
ASN.1 file manually or use a commercially available “MIB builder” graphical tool.

An SNMP specification requires that certain MIBs be supported, while others are
optional. The MIBs that provide protocol statistical information may not be appropriate
for small 8-bit embedded systems. There are some “system” MIBs that you must support
even if it is not applicable to your device. Many of the NMS software rely on the
“system” MIB to identify and discover devices. If the expected MIB is not present, exact
behavior is dependent on NMS software. In that respect, it is always prudent to test your
SNMP Agent with as many NMS software as possible or at least with those that you
know will be used by your end users.

Get/Set Logic for MIB
This is the most crucial step in your SNMP Agent development. This is where you write
the code to bring your Agent alive. If you were developing on a 16- or 32-bit based
system using a commercially available SNMP Agent toolkit, you might be following a
similar procedure depicted in Figure 12.

Developing a SNMP Agent on 8-bit Systems

ESC-465.doc Page 14 of 16

Create MIB
(ASN.1 file)

MIB
Compiler

Function
Stubs

Your
Source

Files

Processor
Compiler

Output File

Figure 12 Typical High-end SNMP Agent Development

Typical high-end SNMP Agent toolkits provide an ASN.1 MIB compiler. You compile
your ASN.1 MIB file using this compiler, and it generates ‘C’ language (or whatever
programming language it supports) function stubs. There may be one or more function
stubs for each MIB object. These function stubs are usually callback functions from the
SNMP Agent library to your application. You are required to fill in these function stubs
to allow SNMP Agent library to “Get” and “Set” its value. Toolkits like these can greatly
reduce the overall development time and simplify the Agent implementation. There are
very few SNMP Agent toolkits available for 8-bit systems. In addition, providing such an
“automated” code generator might create unnecessary overhead for 8-bit systems.
Microchip Technology provides a free SNMP Agent library for its PIC18 family of
microcontrollers. This library defines its own custom MIB syntax, specially designed for
8-bit systems. Included PC-based command-line tool compiles the MIB file and generates
compact binary file for microcontroller firmware.

The MIB Compiler approach requires that you provide run-time functions for every MIB
object even if there are constant objects, whose value does not change over life the of the
application. Since we are talking about 8-bit systems, our goal should be to use as few
hardware resources as possible. It would be beneficial to store constant objects into the
program memory and let the SNMP Agent library read it directly without involving the
application. Also, many of the SNMP Agent libraries require run-time creation of the
MIB structure even though the MIB never changes over the life of the application. These
applications are required to call various library functions to create the MIB structure upon
the application startup. If the library was to provide a utility that creates the MIB at the
design-time, you could save a significant an amount of program memory and processing
time.

Developing a SNMP Agent on 8-bit Systems

ESC-465.doc Page 15 of 16

NMS Software
Before you begin the SNMP-Agent development process, you will need to select NMS
software. NMS software is the front end of your SNMP Agent device. There are many
commercial and non-commercial NMS software programs available, with varying
features and capabilities. Although SNMP is a standard protocol, and SNMP Agents
should seamlessly work with all SNMP-compliant NMS software, it is always a good
idea to verify your device operation. Any given NMS software may expect certain MIB
to be present before proceeding with other operations. If your device does not support
that, the MIB and NMS software may not work properly. The NMS software requires that
you load ASN.1 file for Agent device(s) to be managed. With ASN.1 file loaded into its
memory, NMS software can label each MIB object in a user- friendly manner. Most NMS
software can traverse any SNMP Agent and display its MIB content, even if the ASN.1
file was not preloaded. In that instance, the NMS software would not be able to label
MIB objects in English- like names – all you would see are the dotted-decimal OID
names. Figure 13 illustrates how most NMS software operations work.

Figure 13 Typical NMS Software Operation

Many of the NMS software are also capable of displaying the Agent information in a
graphical format. It may allow you to create graphical objects representing the Agents
being managed, thus may simplify management of the devices. Some software provides
script capability. You may program such NMS software to automatically respond to
certain Agent activities. When you have many devices to manage, automated
management support can reduce management mistakes and provide consistency.

There may also be some cases where off- the-shelf NMS software may not be sufficient
for your application. Your application may require some custom behavior or processing
in a given amount of time. You may also need to integrate NMS software functionality in
your custom application. All these requirements call out for your own custom NMS
software. Many commercial software vendors provide a SNMP NMS software

MIBs
(ASN file)

NMS
Software

Card

Agent
MIB

Network

Developing a SNMP Agent on 8-bit Systems

ESC-465.doc Page 16 of 16

development kit in the form of a library or an Active X objects for Microsoft Windows®
operating system. If you prefer a challenge, you may even use basic socket API to create
your own SNMP NMS software. A custom NMS software may also allow distributed
control, where a device may act as both the NMS and the Agent. With such a dual role, a
device may request status information from other devices and take appropriate actions
locally.

Conclusion
The SNMP, although originally developed for computer networks, can be used for
embedded systems. With careful decisions, you can use it on 8-bit embedded systems.
There are many commercial and non-commercial SNMP solutions available for 16- and
32-bit platforms. For 8-bit systems, the development options are limited. Even with the
few that are available, you need to review them carefully and select the one that best suits
the application. This paper provided a high level overview of the SNMP protocol and the
various steps involved in developing a SNMP Agent on 8-bit embedded systems.

References
Case, J., Fedor. M., et. al. (1990). A Simple Network Management Protocol (SNMP) :

RFC 1157.
McCloghrie, K., Rose, M. (1991). Management Information Base for Network

Management of TCP/IP-based internets: MIB-II : RFC 1213.
Rajbharti, N. (2003). AN870 - An SNMP Agent for the Microchip TCP/IP Stack.

Microchip Technology, Inc. www.microchip.com.
Stevens, W. (1994). TCP/IP Illustrated Volume 1. p. 359-389. Addison-Wesley.
Tanenbaum, A. (1996). Computer Networks (3rd ed.). p. 630-643. Prentice Hall : NJ.

